Margaret: Streamlining Research Productivity Analysis in Colombia with an R Package for GrupLAC Integration

Authors

DOI:

https://doi.org/10.29173/istl2777

Keywords:

Bibliometrics, Margaret package, Research productivity analysis, R, Academic performance measurement, Minciencias, GrupLAC, CvLAC, Scientometrics, Research group evaluation

Abstract

Margaret is an advanced R package designed to systematically extract and consolidate data pertaining to research outputs (such as publications, books, book chapters, and conference presentations) of scientific groups from the GrupLAC platform, an online application managed by Minciencias in Colombia for the registration and updating of researcher and research group information in the fields of science, technology, and innovation. The challenge of monitoring and evaluating scientific production across various web platforms presents a substantial barrier to universities in tracking their contributions effectively. To address this challenge, Margaret accepts a designated list of links corresponding to university-affiliated research groups within GrupLAC. Utilizing web-scraping techniques, the package retrieves and compiles this data into a comprehensive XLSX file. This file encompasses information across 51 distinct categories of research products, enabling research directors to meticulously assess, monitor, and enhance various strategies that aim to augment the production, quality, and impact of scientific outputs. The Shiny application is publicly accessible and can be accessed via the following link: https://ucatolicaluisamigo-investigaciones.shinyapps.io/margaret/

Downloads

Download data is not yet available.

References

Al-Jamimi, H. A., BinMakhashen, G. M., & Bornmann, L. (2022). Use of bibliometrics for research evaluation in emerging markets economies: A review and discussion of bibliometric indicators. Scientometrics, 127(10), 5879–5930. https://doi.org/10.1007/s11192-022-04490-8

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Beigel, F., Packer, A. L., Gallardo, O., & Salatino, M. (2024). OLIVA: La producción científica indexada en América Latina. Diversidad disciplinar, colaboración institucional y multilingüismo en SciELO y Redalyc (1995-2018). Dados, 67(1), Article e20210174. https://doi.org/10.1590/dados.2024.67.1.307

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). Shiny: Web application framework for R (R Package Version 1.5) [Computer software]. R Studio. https://rdrr.io/cran/shiny/

Giorgi, F. M., Ceraolo, C., & Mercatelli, D. (2022). The R language: An engine for bioinformatics and data science. Life, 12(5), Article 648. https://doi.org/10.3390/life12050648

Heldens, S., Sclocco, A., Dreuning, H., van Werkhoven, B., Hijma, P., Maassen, J., & van Nieuwpoort, R. V. (2022). litstudy: A Python package for literature reviews. SoftwareX, 20, Article 101207. https://doi.org/10.1016/j.softx.2022.101207

Lozada-Martinez, I. D., Carvajal-Bautista, J., Picón-Jaimes, Y. A., Dominguez-Alvarado, G., Cabrera-Vargas, L. F., Torregrosa-Almonacid, L., Guevara-Cruz, O., Narvaez-Rojas, A. R., Bolaño-Romero, M. P., Rodriguez-Gutierrez, M. M., Hurtado-Pinillos, M., Aristizabal-Carmona, B. S., Acevedo-Aguilar, L. M., Mass-Hernández, L. M., Llamas-Nieves, A. E., Guardo-Carmona, D., Maiguel Lapeira, J. D., & Bahamon-Rodríguez, D. S. (2022). Surgical research in Colombia part 1: Scientific and academic productivity of the Colombian research groups in surgery. Annals of Medicine and Surgery, 77. https://doi.org/10.1016/j.amsu.2022.103667

Robledo, S., Zuluaga, M., Valencia, L.-A., Arbelaez-Echeverri, O., Duque, P., & Alzate-Cardona, J.-D. (2022). Tree of Science with Scopus: A Shiny application. Issues in Science and Technology Librarianship, 100. https://doi.org/10.29173/istl2698

Rose, M. E., & Kitchin, J. R. (2019). pybliometrics: Scriptable bibliometrics using a Python interface to Scopus. SoftwareX, 10, Article 100263. https://doi.org/10.1016/j.softx.2019.100263

Ruiz-Rosero, J., Ramirez-Gonzalez, G., & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165–1188. https://doi.org/10.1007/s11192-019-03213-w

Silge, J., & Robinson, D. (2016). tidytext: Text mining and analysis using tidy data principles in R. Journal of Open Source Software, 1(3), 37. https://doi.org/10.21105/joss.00037

Zuluaga, M., Robledo, S., Arbelaez-Echeverri, O., Osorio-Zuluaga, G. A., & Duque-Méndez, N. (2022). Tree of Science - ToS: A web-based tool for scientific literature recommendation. Search less, research more! Issues in Science and Technology Librarianship, 100. https://doi.org/10.29173/istl2696

Downloads

Additional Files

Published

2024-11-04

How to Cite

Robledo, S., Arias, B., García, C., Durley-Torres, I., & Zuluaga, M. (2024). Margaret: Streamlining Research Productivity Analysis in Colombia with an R Package for GrupLAC Integration. Issues in Science and Technology Librarianship, (108). https://doi.org/10.29173/istl2777

Issue

Section

There's an App for That
Share |

Most read articles by the same author(s)